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By Sidney M. Harmon and Isabella Jeffreys

SUMMARY

Generalized expressions are obtained by means of the linearized

theory for the surface velocity potentials and the surface-pressure

distributions due to lift and roll 3 the lift-curve slope, and the

damping-in-roll derivative for a series of thin wings. The results are

applicable to wings of arbitrary taper ratio in which the leading edge

is sweptback, whereas the trailing edge is either sweptback or swept-

forward (including zero sweep angles), and the tips are unyawed with

respect to the free-stream direction. The range of speeds covered is

such that the components of the stream velocity normal to the leading

and trailing edges are supersonic. A further restriction is that the

foremost Mach line from either tip may not intersect the remote half-

wing. The configurations for which the results for the stability deriv-

atives are applicable may be extended by means of the reversibility

theorem. These additional configurations include cases in which the

foremost Mach line from either tip intersects the remote half-wing, pro-

vided the Mach line from the leading edge of the center section inter-

sects the trailing edge, and also wings which have sweptforward leading

edges.

The results of the investigation are presented in the form of

generalized design curves for rapid estimation of the derivatives.

INTRODUCTION

The lift and damping in roll as obtained from the linearized

theory of supersonic flow have been reported for various ranges of

supersonic speeds for thin wings having particular plan forms (for

example, see references i to 7). In reference 7, generalized curves are

presented for the lift-curve slope CL_ and the damping-in-roll C_p
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for a particular family of tapered sweptback wings for a range of
supersonic speeds for which the wing lies within the Machcone emanating
from the leading edge of the center section but lies ahead of the Mach
cone emanating from any point along the trailing edge (subsonic leading
edge and supersonic trailing edge).

In the present paper, the range of speeds which is considered in
reference 7 is extended and data are obtained for cases in which a por-
tion of the wing always lies ahead of the Machcone emanating from any
point along the leading edge (supersonic leading edge) although the
trailing edge is still supersonic. The wings considered have an arbi-
trary taper ratio, leading and trailing edges that are each swept at a
constant angle (including zero sweepangles), and tips that are unyawed
with respect to the free-stream direction. The results of the analysis
for wings with sweptback leading edges and either sweptback or swept-
forward trailing edges are given in the form of generalized equations
for the surface velocity potential and for the surface-pressure distri-
bution for the wing at an angle of attack and in a steady rolling
motion. Generalized equations are also given for these wings for the
derivatives CL_ and CZp. A series of generalized curves is presented_
from which rapid estimations of CL_ and CZp can be madefor given
values of aspect ratio_ taper ratio_ Machnumber, and leading-edge sweep.
Someillustrative variations of the derivatives with these parameters
are also given.

As shown in references 8 and 9, the theorem of reversibility
applies to the derivatives CL_ and CZp for the wings considered in
this paper (see also reference i0 for CL_). Consequently, the results

J

for these derivatives, which are presented for wings with sweptback

leading edges 3 apply as well to the corresponding sweptforward wings

obtained by reversing the flight direction. In order to present a

complete and systematic analysisj some data pertaining to the present

calculations which have been given in other papers have been incor-

porated herein.

SYMBOLS

x_y,z

Xa,Ya

rectangular coordinates with origin at leading edge of

center section (figs. I and 3(a))

indicates a transformation of origin of x- and y-axes from

leading edge of center section to leading edge of tip

section (Xa = x h_ ya = y _ h on right half-wing)
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B=_-_ I
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ATE

m = cot A

h

b

C

Cr

ct

A

k =

cot ATE

cot A

undisturbed flight velocity

free-stream Mach number

wing angle of attack

angular velocity about x-axis; radians

Mach angle sin -I _ or cot B

swe@p of wing leading edge_ positive for sweepback

sweep of wing trailing edge_ positive for sweepback

wing semispan

wing span

chord at arbitrary spanwise position

root chord

tip chord

taper ratio (ct/Cr)

w_ng area 2

aspect ratio (1 + X)
C r

BA(1 + _)
BA(I + _) - 4Bm(l- _)



4 NACA TN 2114

A' = BA

m' = Bm

J = A'(1 + x)

free-stream mass density of air

disturbance-velocity potential on upper surface of airfoil

AP pressure difference between lower and upper surfaces of

airfoil, positive in direction of lift

ACp

ACpt

nondimensional coefficient expressing ratio of pressure

difference between lower and upper surfaces of airfoil

to free-stream dynamic pressure ll_pV21

contribution of wing cut-off at tip to ACp; used with

subscripts _ and p to refer to angle of attack and

steady rolling motion_ respectively

X,Y,Z forces parallel to x-, y-, and z-axes, respectively

L lift

n ! rolling moment

CL

C z

lift coefficient / _I

 ws/

rolling-moment coefficient 1
PV2Sb

CL_ = _-- _--_0

Sct

Czp 2vj. °
2V
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Subscripts:

R

TE

refers to reverse of a given wing_ obtained by reversing

flow direction

refers to trailing edge

ANALYSIS

Scope

The analysis is limited to wings of vanishingly small thickness

that have zero camber. The results are valid only for a range of super-

sonic speeds in which the components of the free-stream velocity normal

to the leading and trailing edges are supersonic. These conditions are

now commonly expressed by the term "supersonic leading and trailing

edges". The wing configurations considered in the analysis are defined

by the information and sketches given in figures i and 2. All the data

obtained in the analysis for the velocity potential and pressure distri-

butions and for the derivatives CL_ and CZp are applicable to the

wings of the type shown in figure i. These wings have sweptback leading

edges_ although the trailing edges may be either sweptback or swept-
forward. A further restriction is that the Mach waves from either tip

may not intersect the remote half-wing.

It is indicated subsequently that_ although the data for the veloc-

ity potential and pressure distributions are applicable only to wings of

the type shown in figure i_ the results for CL_ and CZp may be

applied also to an additional series of wing configurations by use of

the theorem of reversibility. This additional series of wings is indi-

cated in figure 2. The wings in the figure have supersonic leading and

trailing edges. In figure 2(a)_ the leading edge is sweptforward. The

configuration shown in figure 2(b) represents an increase in the range

of applicability for BA over that indicated in figure i. This increase

in the BA range_ by means of the theorem of reversibility_ is discussed

in the section entitled "Results and Discussion" and corresponds to the

allowance that the Mach waves from a tip may intersect the remote half-

wing_ provided the Mach line from the leading edge of the center section

intersects the trailing edge of the wing.

The orientation of the wing with respect to a body system of coordi-

nate axes used in the analysis is indicated in figure 3(a). The surface

velocity potentials_ the pressure distributions 3 and the stability deriv-

atives are derived with respect to this system. Figure 3(b) shows the

wing oriented with respect to the stability-axes system. A transforma-

tion of the body system of axes to the stability system of axes
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(references ii and 5) indicates that to the first order in _, the
derivatives CL_ and CZp have the samevalue in the stability system
as they do in the body-axes system shownin figure 3(a).

Method

Basic considerations.- The evaluation of the derivatives CL_ and

CZp involves the integration over the wing of the disturbance pressures

caused by an angle of attack _ and a steady rolling angular velocity p,

respectively. In the treatment of small disturbances, such as are con-

sidered in this analysis, the disturbance pressures may be determined

from the well-known relationship

2pV x 4 (1)_Cp - i l = V
pv2 _ ov2

Derivation of _ and ACp distributions.- The potential func-

tion _ must be determined so as to satisfy the linearized partial dif-

ferential equation of the flow and the boundary conditions that are

associated with the wing in its prescribed motion.

The methods for deriving the pressure distribution for lifting

swept wings of finite aspect ratio of the type considered herein are

extensively treated in the literature (for example, references l, 2, 4,

and 12 to 19). In the present analysis, it was found convenient to

obtain the surface-potential function and the pressure distribution on

the wing by means of the method and data presented in references 14, 15,

or 16.

Expressions for _ and &C? distributions.- For purposes of

obtaining generalized expressions for the surface velocity potential and

pressure distributions, a general wing of the type considered in this

analysis is conveniently divided into five individual regions. These

regions are indicated in figure 4 and are defined by means of Mach fore-

cone boundaries which yield regions in which all points are influenced

by a particular type of disturbance. Thus all points in region 1 are

influenced by a disturbance which is identical to that induced by an

infinitely long oblique wing. Points in region 2 are influenced by a

disturbance which is identical to that induced by a triangular wing.

Points in region 3 experience two types of disturbances; one of these is

the same type as that in region 1 and the other results from the effect

of the wing cut-off at the tip which is hereinafter denoted as the tip

effect. Points in region 4 experience disturbances which include all

types associated with regions I_ 2, and 3. Consequently, the formula
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for _ or £Cp in region 4 expresses the effects of all the disturb-

ances experienced in regions 13 23 and 3. When the _ or _Cp expres-

sion as determined for region 4 is used for any of the regions 13 2_

or 3_ certain terms become imaginary. These imaginary terms indicate

the condition that a disturbance type associated with region 4 vanishes

in the other regions i, 2, or 3. The foregoing facts show that the

expression for _ or _Cp in any of the regions I, 2, 3, or 4 is

found simply as the real part of _ or _Cp as determined for region 2.

Points in region 5 are actually influenced by all the disturbances which

affect region 4_ together with a new disturbance which arises from the

tip effect associated with region 2. However_ if the effective forezone

of influence is drawn for points in region 53 that is 3 if the external

field is canceled by the appropriate area on the wing surface 3 the

effect of the adjacent half-wing disturbance is seen to be completely

canceled by the tip effect arising from region i. The real part of the

expression for _ or _Cp, as determined for region 5, consequently

does not yield the corresponding formulas for the other regions.

The formulas for _ and _Cp for the five regions for a general

wing of the type considered in this analysis are summarized in tables I

and II for the cases of angle of attack and rolling 3 respectively. It

is significant to note in table II that in regions 1 to 4 the pressure

distributions caused by an angle of attack are conical (f(v) or f(Va)

and those caused by steady rolling are quasi-conical (xf(V) or xaf(V a

Examples of the pressure distribution in the chordwise and spanwise

directions for the cases of angle of attack and rolling are given in

figures 5 and 63 respectively.

,

Derivation of formulas for CL_ and CZp.- The derivatives CL_

and CZp are basically obtained by integrating over the wing the quan-

tities _Cp(xjy) and ACp(x_y) times its moment arm, respectively.
Thus

= -- ACp dx dy
CL_ S_ _ S

(2

1 j)f aCpy ax dy
C_p - Sb pb/2V S

(3)

4
where ACp = _ _x and _x for the angle of attack and rolling cases

are linear functions of _ and P3 respectively.
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The conical form of ACp for CL_ (f(V) or f(Va) ) and the

quasi-conical form of ACp for CZp (xf(V) or xaf(Va)), as indi-
cated in table II for regions i to 4, make it convenient to employ a
polar integration procedure. In this polar integration procedure, the
variable of integration y or Ya is replaced by the variable V
or Va, respectively, and the integrations in equations (2) and (3) are
conveniently performed first with respect to x and then with respect
to V or Va. In somecases in the present analysis, it was found
convenient to utilize the potential function _ to obtain the deriva-
tives CL_ and C_p. Thus, for a lifting wing, the linearized, thin-
airfoil theory yields a potential function _ which is antisymmetrical
with respect to the xy-plane (z = 0). Furthermore, _ is continuous
for z = Constant (either z---_+O or z---_-O). Consequently, _ is
zero at the wing leading edge. Then, because _x is continuous on the
wing_ there results

T.E. 4 ( T.E. 4ACpd :V Cxax:vCTE
.E. .E

(4)

The total lift per unit span along any wing section, consequently,

is proportional to the value of the potential at the trailing edge.

Similarly, the rolling moment contributed by any wing section is pro-

portional to the product of the potential at the trailing edge and its

moment arm. Thus the derivatives are

4

CL_ : v--S"_/_,TE _TE dy

and

CZp - VSb pb/2V _TE, Y dy (6)
YTE

where the integrals are evaluated along the wing trailing edge. For

cases in which the derivatives were expressed in the form of equa-

tions (5) or (6), the potential _TE was obtained from table I by

specifying x and y or xa and Ya for conditions along the wing

trailing edge.
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RESULTSANDDISCUSSION

Formulas for CL_ and CZp

The formulas for CL_ and CZp are summarizedin the appendix.
It may be found from an examination of table II that the pressure dis-
tributions are in general markedly different for the cases where the
Mach line from the leading edge of the center section intersects the
wing tip and where this Machline inter'sects the wing trailing edge.
In order to determine the derivatives CL_ and CZp, however, it is
sufficient to integrate the forces or momentson the wing as determined
for the case in which the Machline intersects the wing tip. The real
parts of the resulting expressions then also yield the corresponding
derivatives CL_ and CZp for the case in which the Mach line inter-
sects the wing trailing edge. This fact results from the inherent rule
of supersonic flows that any disturbance cannot propagate ahead of the
Machaftercone. Then the first case (Machline cutting tip) may be
converted to the second case (Mach line cutting trailing edge) by cut-
ting off an appropriate rear portion of the wing. This conversion does
not alter in any way the original pressure distribution over the new
wing. Thus, if the expressions for CL_ and CZp as determined for
the first case are now applied to the second case, certain terms which
arise from disturbances peculiar to the first case becomeimaginary,
and the remaining terms that are real yield the corresponding expres-
sions for CL_ and CZp for the second case.

Charts for BCL_ and BCZp

The results of computations for the derivatives CL_ and C_p
are presented in figures 7 and 8, respectively. The data are shownfor
values of taper ratio k from 0 to 1.0 for values of aspect-ratio
parameter BA from 2 to 20. The range of sweepangles covers values
for sweep-angle parameter B cot A from i to _.

For constant B, that is, constant M, the curves in figures 7
and 8 indicate directly the variation of CL_ and CZp, respectively,
with sweepfor constant values of A and k. In this case the curves
for increasing values of B cot A correspond to decreasing angles of
sweepbackfor both the leading and trailing edges. Somespecific varia-
tions of the derivatives CL_ and CZp with Machnumber_aspect ratio,
sweepangle, and taper ratio are shownin figures 9 and i0. The wing
parameters represented in the figures include configurations with
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supersonic and subsonic leading edges and supersonic trailing edges.
The results for the supersonic leading edges were obtained from fig-
ures 7 and 8 of this paper and those for the subsonic leading edges
were obtained from reference 7. (Note that application of the
reversibility theorem to the results of reference 7 for wings with
subsonic leading edges and supersonic trailing edges will yield
corresponding results for wings with supersonic leading edges and
subsonic trailing edges.)

The data in these figures show that the manner in which CL_

and CZp vary with manyof the factors depends to an important extent
on the value of the aspect-ratio parameter BA. Figures 7 and 8 show_
for constant Machnumber3 that when BA is less than approximately 33
the magnitudes of CL_ and CZp tend to increase with decreasing
sweepangle; however_when BA is greater than approximately 33 the
magnitudes of these derivatives tend to increase with increasing sweep
angle. This general trend for values of BA greater than approximately 3
becomesmore pronounced as BA is increased. These data indicate also
that for values of B cot A greater than approximately 3_ the sweepof
the leading and trailing edges for constant BA and k have a very
small effect on BCL_ or BCZp.

The foregoing trends may be explained by the relation of the Mach
aftercone which emanatesfrom the leading edge of the center section to
the wing tip. This relationship has an important effect on the contri-
bution of the wing tip region to the derivatives CL_ and C_p. If
the quantity

AB(I+
cot A<AB(I + _) - 4X

then the Mach line from the leading edge of the center section cuts the

wing tip. This condition yields region 5 in figure 4. If the effective

forezone of influence is drawn for points in region 53 that is_ if the

external field is canceled by the appropriate area on the wing surface_

it is seen that the pressure distributions in this region for both angle

of attack and rolling are determined only by the sources in a strip

along the leading edge of the remote half-wing. Because these sources

generally are at a comparatively large distance from region 5, the con-

tribution of region 5 to CL_ is comparatively small (see fig. 5). In

the case of rolling 3 these sources at the leading edge of the remote

half-wing actually contribute negative damping to region 5 because these

sources have the reverse sign from those on the adjacent half-wlng

(see fig. 6). For a given value of B cot A 3 from geometric considera-

tions 3 this influence of region 5 in reducing the magnitudes of CL_

and C_p decreases as the value of BA increases.
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Similarly; from geometric considerations_ the influence of region
in reducing the magnitudes of CL_ and CZp increases as the value of
the taper ratio k increases. This factor contributes to an important
extent to the trend that the maximumvalues of CI_ and CZp occur at
progressively lower values of k as BA decreases (see figs. 9 and i0).

Extensions of CL_ and CZp Results by

Reversibility Theorem

Increased range for BA.- The direct application of the formulas

in the appendix is limited by the restrictions that the leading edge is

sweptback and is supersonic_ that the trailing edge is supersonic_ and

that the foremost Mach line from either tip does not intersect the

remote half-wing. As noted in the introduction_ however_ the reversi-

bility theorem for CL_ and CZp is applicable for all the plan forms

used in the derivation of these formulas. In this connection, wing

plan forms of the type shown in figure 2(b) require special attention.

In these cases_ the foremost Mach line from either tip intersects the

remote half-wing_ that is_

4B cot A

BA< (1 + _)(1 + B cot A)

therefore these conditions are outside the validity of the formulas in

the appendix. It can be shown_ however, that if this reduced-aspect-

ratio parameter is accompanied by the condition that the foremost Mach

line from the center section intersects the trailing edge_ that is

4kB cot A

BA _ (i + k)(B cot A - i)

the reverse of the wings shown in figure 2(b) will meet all the condi-

tions for the validity of the formulas in the appendix. Thus the

values for CL_ and CZp for wings of the type shown in figure 2(b)

can be calculated from the formulas in the appendix by using the wing

parameters for the reverse of the given wing, and applying the calcu-

lated result to the given wing. If the subscript R refers to the

reverse of the given wing_ the parameters to be used in the formulas

are related in the following manner:

BA R = BA

kR = k

1
k_ = _ (7)
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Wings with sweptforward leading edges.- The results for BCL_

and BC_p which are shown in figures 7 and 8 for wings in which the

leading edges are swept back (positive values for B cot A) can be

applied to wings with sweptforward leading edges (negative values

for B cot A) by use of the reversibility theorem. (See fig. 2 for

applicable wing configurations.) Thus, suppose the sweep-angle parame-

ter is expressed as B cot A where this quantity is negative and where

the reverse of the given wing meets all the conditions for the validity

of the data in figures 7 and 8 as indicated in figure i; the values

for BCL_ and BC_p for the given wing are then obtained from figures 7

and 8_ respectively_ by choosing a wing for which the relationships

expressed by equation (7) apply. Thus

B2A cot A(I + k)

B cot AR = 4B cot A(I - k) - BA(I + k)

BAR = BA

and

kR = k

where the subscript R refers to the parameters to be used in figures 7
and 8.

An illustrative comparison of BCL_ and BCZp for wings with

sweptback and sweptforward leading edges is given in figures ii and 12,

respectively. The data in these figures are presented for a taper ratio

of 0.5_ for values of BA of 2_ 4_ and i0, and for a range of B cot A

from -5 to 5. The wing parameters represented in the figures include

configurations with supersonic and subsonic leading and trailing edges.

The results for the sweptback leading edges were obtained from

figures 7 and 8 of this paper for the supersonic leading and trailing

edges and from reference 7 for the subsonic leading edges and subsonic

and supersonic trailing edges. In the case of the subsonic trailing

edges, the results from reference 7 have a limited significance in that

they represent an upper limit for the true values of the derivatives.

The limited signifance of the results for the subsonic trailing edges is

indicated in figures ll and 12 by means of the dashed portions of the
curves.

The results for the'sweptforward wings were obtained by use of the

reversibility theorem. In this connection, it should be noted that the
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reversibility theorem for CL_ and C_p is applicable even for
subsonic leading and trailing edges (reference 9).

The comparison for the wings with sweptback and sweptforward
leading edges in figures ii and 12 indicates that the curves for BCL_

and BCZp for _ = 0.5 are3 in general_ very nearly symmetrical with
respect to the ordinate axis. The significance of the symmetry of the
curves is better visualized when it is noted that_ for a specified A_
_ and A_ if the sweepangle of the leading edge is reversed in sign
to -A_ there is also an alteration in the sweepangle of the trailing
edge_ the magnitude of which is dependent on the various wimg parameters.
Consequently_ the near symmetryof the BCL_ and BCZp curves in fig-
ures ii and 12 for _ = 0.5 indicates that for a given A and A_
if A is reversed in signj the values for the derivatives CL_

and CZp are3 in general_ only slightly changed even though the sweep
angles of the trailing edges of the two wings maybe markedly different.
For the case of an untapered wing3 the theorem of reversibility indi-
cates that CL_ and CZp are unchangedby reversing the signs of A
and ATE3 that is_ the corresponding curves in figures ii and 12 would
be identically symmetrical with respect to the axis of ordinates for
all values of BA.

CONCLUDINGREMARKS

Generalized expressions have been obtained by meansof the lin-
earized t_leory for the surface velocity potentials and the surface-
pressure distributions due to lift and rollj the lift-curve slope 3 and
the damping-in-roll derivative for a series of thin wings. The results
are applicable to wings of arbitrary taper ratio in which the leading
edge is sweptback_whereas the trailing edge is either sweptback or
sweptforward (including zero sweepangles)_ and the tips are unyawed
with respect to the free-stream direction. The range of speeds covered
was such that the componentsof the stream velocity normal to the
leading and trailing edges were supersonic. A further restriction is
that the foremost Mach line from either tip maynot intersect the
remote half-wing.

The configurations for which the results for the stability deriva-
tives are applicable maybe extended by meansof the reversibility
theorem. These additional configurations include cases in which the
foremost Mash line from either tip intersects the remote half-wing_
provided the Mach line from the leading edge of the center section
intersects the trailing edge_ and also wings which have sweptforward
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leading edges. The results of the investigation were presented in the
form of generalized design curves for rapid estimation of the
derivatives.

A significant result of the investigation was that for constant
Machnumberwhen A_M2 - 1 (where A is aspect ratio and M is Mach
number) was less than approximately 3, the magnitudes of the lift-curve
slope CL_ and the damping-in-roll derivative C_p tended to increase
with decreasing sweepangles; however, when A_ - 1 was greater than
approximately 33 the magnitudes of these derivatives tended to increase
with increasing sweepangle.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Air Force Base, Va., February 23, 1950



NACATN 2114 15

APPENDIX

SUMMARYOFFORMULASFOR CL_ AND CZp

The following formulas for CL_ and CZp refer to wings which
have an arbitrary taper ratio_ leading and trailing edges that are each
swept at a constant angle (including zero sweepangles)_ and tips that
are unyawedwith respect to the free-stream direction. These configura-
tions are limited by the conditions (see fig. i)

B cot A _ i

B cot ATEI _=i

and

4B cot A

BA _ (! + _)(I + B cot A)

Note that the trailing edges may be either sweptforward or sweptback.

In the formu!as_ care must be used to preserve the correct sign of the

terms involving radicals. For example_ if a _ 0 and b _ O_ then

It may be of interest to mention that in computing with the formulas_

it was found that if seven s_gnificant figures were used_ reliable
results were obtained.

Formulas for CL_

If' the Math line is coincident with the leading edge_ that is_

B cot A = i_ there result:
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For tapered wings:

%_ _BI(1 __)2(k+ I)_77. _-i(2__i)- oos-1 -
k

(i - _)_(i- _)(k+ l)

k -I
+ +

k(l - _)2(k+ l)

_k - k(k + 1)-12

2_(I - _)2(k+ 1)_k(k+ i)
c°s-i 2k - k k + (Al)

For untapered wings9 k = i; km' = i:

2

CL_ - _A'B _I + A') 2 A' - i2 c°s-I A' + i 8 d (A2)

B cot A > i_ and if

When the Mach line is behind the leading edge_ that is,

4km'

A' < (i + k)(m' - i)' there result:

For tapered wings:

CL_=

- - m' + i -i 4km'(l - A') + A'(3k + i) +
' 4kin (k l)4A'(k - i) k(km' + I) cos ' - A' -

"h

_m'k + A'(I + 3k)_2 [ m' - 1 4km'(A' - i) + A'(k - I).}
4A'(k + i) "_(km' + i) c°s-i 4kin' + A'(3k + i)

)

(A3)
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For unswept leading edges or for unswept trailing edges;

CL_ = _B(I- )`) s-]

(2 - ),)2 _os

)`2

-i J - 2)` [

2(2 - )`)f

k = _ or 0:

For untapered wings:

4 __ m'2(m'2- 2) cos-i i m '2

CL_ = _m _ (m'2 - i) m' __A'B ,2 I m '2 - i

+

2(m ' 2) ,_ -i m' - A'(m' - i)2(m' - i) + A'ml cos m' +

m'(A' - I) m'_A'_m' - A'(m' - i_!
(m' + A')24_' - l cos_ l A' + m' + >

2_ +i 2_m' - I J

4km'

If A' > (l + )`)(m'

For tapered wings:

CL_ =

i):

• %.

%

B_m '2 - i[ 2A'(k 2 - i)

k_m '2 - 1 cos-1 --_

_/(_, - 1)(kin' + 1)

cos_ 1 4 2)` - J
2)`

(A4)

(AS)

+

cos-1 l__+
m I

F4km' - A'(k - 1)--12j m' + i I-4A' ('k - l) _lk(_' + l

(A6)
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For unswept leading edges or for unswept trailing edges}

For untapered wings} k = k = I:

= 4 £ m'2(__m'2 2) cos-i 1
CL_

_BA'_m '2 - i_ (m '2 - i) m'

- I2(m' - i) +

m ,2
+

k = _ or O:

(A7)

(A8)

Fo_ulas for CZp

If the Mach line is coincident with the leading edge, that is,

B cot A = I_ there result:

For tapered wings:

CZp =

J3k3(1 - k) 3 + 2j2k3(1 - k)2(9k - 8}_

(1 - k) 3

2Jk3(l - k)(15k 2 - 32k + 12) + 12k4(k 2 + 4)_
-- +

(1 k) 3

4_3(i - k)(23k 2 + lOk + 2) + 4kj2(41k 2 - 5k - i)_

35
+

, 3_I _i-k) + 4k

4_K-12k2J(29k - i) + 240kSjI_ J(i + k) +

35 1 3J2(I + k)3
J

i

(continued on next page)
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8kS(k2 + 4)

j3(l _ k2)3_ _ i

3(1 - k2) 3 -

_I i J(l - k) + 2__k - c°s-i 2k -

512
X

( )3j2
k(41k 3 + 63k 2 +llk ii) - Jk(13k 2 + 29k - 41 48k(k 1)2+

_J2(3k2 + 3k + 20) + 4Jk(k2 - 21k - 2) + 4k2k(23k + 3)_x64(k + 1)2 _

(A9)

For unswept leading edges or _for unswept trailing edges; k = _ or O:

CZp - 3_B(I + k) - I05j2 J

j3 2 + 4 -3_@BJ3(I + k)

J

64 _ 2 - _ + _ + k cos -I j + +

2 pI%312 +4  $12 I__
(_o)
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For untapered wings_ _ = k = i:

16 8CZp - _BA' 3 3-_
+

(A' + I)2(13A '2 - 22A' + 13) cos-i A' - i ,+
768 A' + i

/37A '3 41A '2 123A' 3___7_ (All)

\2-_ 1920+_7-Y_--

and if

When the Mach line is behind the leading edge 3 that is, B cot A > i,

4km'

A' < (i + k)(m' - i)' there result:

For tapered wings:

CZp = B[3_j3( I + _)(m '2 _ 1)3/2(1 _ k2) 3

-I i
cos -- +

m'

128m'4k3(l + k2 _ 2m,2k 2)

3_j3(i + X)(l - k2)2(m '2 - l)(m'2k 2 - l)

128m'4kS_-4+ m'2k2(k2 + 3_ _o-1 1
3_J3(i + X)(I - k2)3(m'2k 2 - 1) 3/2 s km'

cos-i 2m'k- J(m'k2m,k i)_-( J4(l - k)4_4k4m'5 + 12k3m'4(k + 5)

m'Bk2(-17k 2 + 22k + 43) + m'2k(-Sk 3 - 48k 2 + 3k + 2) -

m'(lOk 3 + 45k 2 + 12k + 5) - (5k 2 + 14k + 5)_ +

16km'J3(l - k)3_m'Sk 4 + 8k3m'4(k + 2) + m'3k2(-3k 2 + 14k + 5) +

m'2k(-3k 3 - 8_ + k - 6) - m'(6k 3 + 7k2 + 8k + 3) -

<3k2 + 2k+ 3_ + 3_'2_2j2(1- k)3E12k3m'_- 9k%'3<3+ _)+
(continued on next page)
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3m'2k(k2 - 7k - 6) + 3m'(2k2 - 5k - i) - 3(1 - k!_ +

256m'3k3J(l k)2._2m'3(l - k) + m'2k(2 - k - k2) +

m'(-2k 2 + k + I) + (! - k)_ + 256k4m'4_8k4m'5 + 4mt4k3(7 - k) +

k2m'3(-9k 2 - 10k + 35) + kin'2(3k3 - 32k2 - 5k + 18) +

m'(6k 3 - 37k2 + 4k + 3) + (3k2 - 14k +

)_I cos_I J(l + k - 2kin') + 4km'
3 J(l - k) + 4kin'

96_J3(i + k)k(l - k)3(m '2 - l)(m'k + l)3_k(m'k + l)(m' - I)

j4(l + k)4_24k4m '5 + 12k3m'4(5 - k) + m'3k2(-17k 2 - 22k + 43)

km'2(Sk 3 - 48k 2 - 3k + 2) + m'(10k 3 - 45k 2 + 12k - 5) +

k2m'3(-3k 2 - 14k + 5) + km'2(3 k3 - 8k2 - k - 6) + m'(6k 3 - 7k2 +

9k2m'3(3 k) + 3km'2(k 2 + 7k - 6) + 3m'(2k 2 + 5k - i) +

k2m'3(-9k2 + 10k + 35) + km'2(-3 k3 - 32k2 + 5k + 18) +

m'(-6k 3 37k 2 - 4k + 3) - (3k2 + 14k +

cos_l J(k - i + 2km') - 4kin'

[ J(:L + +

j3(l k2) 2_2k7m '7 + 4k6m '6 k_m'5(5k 2 7) + k4m'4(5 k2 - 13) +

2kBm'B(5k2 - 4) - 2k2m'2(5k2 - 7) km'(5k 2 - 3) + 5(k 2 i)_ +

(continued on next page)
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48"2(1 - k2)2km,(13k6m,6 _ 6kSm,5 _ 33k4m,4 + 12k3m'3 + 27k2m'2 _

6kin' - 7) "I 16J(l - k2)k2m'2_k7m '7 + 2k6m '6 + 3k5m'5(k 2 - 3) -

3k4m'4(k 2 + i) + 6k3m'3(2 - k2) + 6k4m '2 + km'(Sk 2 - 5) -

(3k 2 - I)_ + 64k3m'3_-SkTm '7 - k6m'6(k 2 + 7) + 4kSm'5( k2 + 5) +

k4m'4(7k2 + 17) - 8k3m'3(k 2 + 2) - k2m'2(llk 2 + 13) + 4km'(k 2 + i) +

-]I km_ +](5k 2 + 3 24_J3(i + k)k(m '2 - i)(i - k2)2(k2m '2 - 1) 3

Y

(A12)

For untapered wings; k = k = i:

_ -16 I_,4(5m,2 l) + 4A'3m'(2m '2 l) 6A'2m'2(2m + l)

CZp _BA' 3 [_- + 6m' + - - '

4A'm '3 + m'4(2m '2 + 6m' + 5)_

m'(A' I)cos-i
A' + m'

192(m' + l) 3

+ _m,4(2m '4

4m '3 - pm'2 + 9m') + 8A'3m'(m ' - 1)2(m '2 - l) - 12A'2m'3(m ' - l) 2 +

4A'm'3(m ' - i)_

m' A'(m' l)cos-i - _
m v

192(m' - l)2(m '2 - l)_m '2 - i

+

,4( 8m,2 4m,4 m,6) i m'4(8 + lOm '2 - 3m '4)

m - + - cos_ 1 m-F + 144(m '2 1) 3 +
48(m'2 - i)3_m'2 - 1

3A'3(-m '4 + 3m '3 - 3m '2 + m') + A'2m'(2m '4 + 39m '3 - 61m '2 -

3m' + 23) + A'm'2(-14 + 34m' - 19m '2 + pm,3 _ 3m ,4) + 3m,3(-5

6m,2 _ m,3 + 2m'4)_
A'2(m'4 - i) iil)_m' +288(m ,2 - 1)2(m ,

(AI3)



NACATN 2114 23

4km'
If A' > (i + X)(m' - i):

For tapered wings: _ ,

l_-128m'4k3_k 2 - m'2(3k2 + i)_

c_p = NI3_j3(I+ _)(m,2 _ 1)3/2(I _ ke)3

128k3m'4(1+ k2 2m,2k2)

3_J3(I + k)(l

+

k2)2(m'2 - 1)(k2m '2 - 1)

128kP_'4-_4+ _'2k2(k2+ 3_ -I -l
3_J3(i + X)(I - k2)3(m'2k 2 - 1)3/2 cos km--Y -

k)4_4k% '9 12k3m, 4 k2m,3(_17 k2

km'2(-Sk 3 - 48k 2 + 3k + 2) - m'(lOk 3 + 45k 2 + 12k + 5) -

k2m'3(-3k 2 + 14k + 5) + km'2(-3k 3 - 8k 2 + k - 6) - m'(6k 3 + 7k 2 +

8k + 3) - (3k 2 + 2k + 3)_ + 32k2m'2j2(l - k)3_12k3m '4 -

9k2m'3(3 + k) + 3km'2(k 2 - 7k - 6) + 3m'(2k 2 - 5k - 1) -

3(_- _)_+ 2_6k3_,3j(__ _)2_2=,3(__ k) + _,2(2 - k - k2) +

k2m ,3(_9k2 _ lOk + 35) + km'2(3k 3 _ 32k 2 _ 5k + 18) + m'(6k 3 -

37k 2 + 4k + 3) + (3k 2 - 14k +

3_96J3(i + k)k(1 - k)3(m '2 1)(km'+ i)3{k(_'+ 1)(='-

(AI4]
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For unswept leading edges or for unswept trailing edges; k = _ or O:

-Z I3 + k2_k(Z _ k)2(Sk _ 3) + 6J(1 - k)(k2 _ 4k +cb : B(z - _)3(z+ _)

41+ _(-3_2 + 8_- 6)j l .-_I (A_I

uj
For k = O:

128k3m ,4 _ I + k2 - 2k2m '2

= ik2-Z _
CZP 3_BA;3(--T- k2)2 _j2 l i) i)

m'2(3k 2 +l) - 4k2 1

(i - k2)(m '2 - l) 3/2 c°s-i m--[+

+

k4m'2(k 2 + 3) - 4k2

(1 - k2)(k2m '2 - l) 3/2

(_6)

For untapered wings; k = k = i:

= -16 '4(Pm'4 - 4m '3 - 2m '2 + 9m') + 8A'3m'(m ' - 1)2(m '2 - i) -
CZp _A,3B

12A,2m,3(m , _ 1) 2 + 4A'm'3(m ' - 1) 2] _ ,

192(m' - 1)2(m '2 - 1)_m,2 _ 1

m'4(-3m '4 + lOre'2 + 8) m'4(-m'6 + 4m'4 - 8m'2) cos -I __I_

144(m '2 - 1)3 + 48(m '2 - 1)_ '2 - 1 m .j
(AI7)

+



NACATN 2114 25

REFERENCES

i. Lagerstrom, P. A., Wall, D., and Graham, M. E.: Formulas in
Three-Dimensional Wing Theory. Rep. No. SM-II901; Douglas
Aircraft Co., Inc., July 8, 1946.

2. Lagerstrom, P. A._ and Graham,Martha E.: SomeAerodynamic Formulas
in Linearized Supersonic Theory for Dampingin Roll and Effect of
Twist for Trapezoidal Wings. Rep. No. SM-13200,Douglas Aircraft
Co., Inc., March 12_ 1948.

3. Jones, Arthur L., and Alksne, Alberta: The DampingDue to Roll of
Triangular; Trapezoidal, and Related Plan Forms in Supersonic
Flow. NACATN 1548, 1948.

4. Cohen; Doris: The Theoretical Lift of Flat Swept-BackWings at
Supersonic Speeds. NACATN1555, 1948.

5. Harmon, Sidney M.: Stability Derivatives at Supersonic Speedsof Thin
Rectangular Wings with Diagonals ahead of Tip MachLines. NACA
Rep. 925, 1949.

6. Malvestuto, Frank S., Jr., and Margolis, Kenneth: Theoretical
Stability Derivatives of Thin SweptbackWings Tapered to a Point
with Sweptbackor Sweptforward Trailing Edges for a Limited Range
of Supersonic Speeds. NACATN 1761_ 1949.

7. Malvestuto, Frank S., Jr._ Margolis, Kenneth, and Ribner, Herbert S.:
Theoretical Lift and Dampingin Roll of Thin SweptbackWings of
Arbitrary Taper and Sweepat Supersonic Speeds. Subsonic Leading
Edges and Supersonic Trailing Edges. NACATN1860, 1949.

8. Harmon_Sidney M.: Theoretical Relations between the Stability
Derivatives of a Wing in Direct and in Reverse Supersonic Flow.
NACATN 1943, 1949.

9. Brown, Clinton E.: The Reversibility Theoremfor Thin Airfoils in
Subsonic and Supersonic Flow. NACATN 19443 1949.

i0. Hayes, Wallace D.: Reversed Flow Theoremsin Supersonic Aerodynamics.
Rep. No. AL-755, North American Aviation, Inc., Aug. 20, 1948.

ii. Glauert, H.: A Non-Dimensional Form of the Stability Equations of

an Aeroplane. R.&M. No. 1093, British A.R.C., 1927.



26 NACATN 2114

12. Brown, Clinton E. : Theoretical Lift and Drag of Thin Triangular

Wings at Supersonic Speeds. NACA Rep. 839, 1946.

13. Brown3 Clinton E., and Adams, Mac C. : Damping in Pitch and Roll

of Triangular Wings at Supersonic Speeds. NACA Rep. 892, 1948.

14. Evvardj John C.: Distribution of Wave Drag and Lift in the

Vicinity of Wing Tips at Supersonic Speeds. NACA TN 1382, 1947.

15. Evvard, John C.: Theoretical Distribution of Lift on Thin Wings

at Supersonic Speeds (An Extension). NACATN 1585, 1948.

16. Moeckel, W. E., and Evvard, J. C.: Load Distributions Due to

Steady Roll and Pitch for Thin Wings at Supersonic Speeds.

NACATN 1689, 1948.



NACATN 2114 27

TABLE I.- GENERALIZED FORMULAS FOR _ DISTRIBUTIONS

I > i; BA> 4B cotA (See fig. 1.)'7cot A _- i; IB cot ATE = (i + k)(l + B cot A) d

.... Mach llne

_Y

2 _'_3,

_ ./"4 •

t /c

js" $/

X

'\

\

Formula for _ contributed by

v_(_ - _-)

> Ya

Region

see

sketch)

C B2m - i

-i x - B2myy) cos
B(mx - y)

r__ + (rex+ y) cos-I

Ya) cos -I mXa + Ya(2Bm + i)

mxa - Ya
+ 2{-mya(x a + BYa)(Bm + i)

f-

Ya) -
VCL mx - cos -I mXa + Ya(2Rr" + i) COS- 1 -rexa + Bem2y a + h(B2m 2 - i_

k.-7 _ y-_ " _m(m_-y_)

c°s-I _=_. B%2y_.+ h(B2_+ l) _ 1(mx,_+ 2h + Ya) + 2 -_-_(xa + By_)(,_,+ l)
Bm(mXa + Ya + 2h) J

+ Ya + 2h) cos -I mXa + ya(21_ - I) + 2h
mXa + Ya + 2h
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V<

Z

Y

(a) Notation and body axes used in analysis.

V<

Z

(b) Stability axes. (Corresponding body axes dashed for comparison.)

Figure 3.- System of axes and associated data.
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(a) Taper ratio k = O.

Figure 7.- Variation of BCL_ with sweepback-angle parameter for

various values of aspect-ratio parameter and taper ratio.
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(b) Taper ratio X = 0.25.

Figure 7.- Continued.
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